OR Foundation
  • About
    • Oral Reconstruction Foundation
      • Purpose and Mission
      • Foundation Board
      • Scientific Working Group
      • Education Working Group
      • History
      • Career
      • News
  • Granting
  • Publications
    • Grant Publications
    • Consensus Publications
  • Awards
    • Research Award
      • Awards 2018/2019
      • Award 2016/2017
      • Award 2014/2015
      • Award 2012/2013
      • Award 2010/2011
      • Award 2008/2009
    • Poster Competition
      • Competition 2024
      • Competition 2018
      • Competition 2016
      • Competition 2014
      • Competition 2012
  • Education
    • International Symposia
    • Global Symposia
    • National Symposia
    • Education Courses
    • Webinars
  • Contact
Select Page

Three-dimensional assessment of crestal bone levels at titanium implants with different abutment microstructures and insertion depths using micro-computed tomography.


Becker K, Klitzsch I, Strauber M, Schwarz F

Clin Oral Impl Res 2017;28:671-6 (Grant CF31301)

Abstract

Objectives:

To (i) assess the impact of insertion depth and abutment microstructure on the three-dimensional crestal bone-level changes at endosseous titanium implant using μCT and computerized image processing and (ii) to correlate the findings with previously reported histology.

Material and methods:

Titanium implants (conical abutment connection) were inserted in each hemimandible of n = 6 foxhounds with the implant shoulder (IS) located either in epicrestal (0 mm), supracrestal (+1 mm) or subcrestal (-1 mm) positions and randomly (split-mouth design) connected with machined or partially micro-grooved healing abutments. At 20 weeks, the tissue biopsies were processed for μCT and histological (HI) analyses. The volumetric dehiscence profile around the implants was computed as distance between the implant shoulder (IS) and the most coronal bone-to-implant contact (CBI) using MATLAB. The respective buccal and oral values were averaged, and agreement with the respective IS-CBI scores from HI was assessed using Bland-Altman plots.

Results:

A median net bone gain was observed for supracrestal insertion depths at both abutment types, but lower bounds of the 75% quartile experienced net bone losses. Epicrestal and subcrestal insertion depths were linked to slight bone losses, and the buccal and oral dehiscences were smaller compared to supracrestal positioning. Bland-Altman plots yielded a moderate agreement of IS-CBI values measured with μCT and HI.

Conclusion:

The novel image processing method allowed reliable evaluations and pointed to a direct impact of insertion depths on crestal bone-level changes. Additionally, it demonstrated that HI morphometry crucially depends on the chosen cutting position.

SOURCE

  • Facebook
  • X
  • Instagram
  • RSS

© Oral Reconstruction Foundation 2026 | Imprint | Disclaimer | Privacy | Sitemap | Professional websites Basel