

Primary stability measurement of two types of conical self-tapping implants in an ex-vivo model

SCHIEGNITZ, E (*)¹; KÄMMERER, P¹; PALARIE, V²; WAGNER, W¹

¹Department of Oral and Maxillofacial Surgery, University Medical Centre, Mainz, Germany

²State University of Medicine and Pharmacy "N. Teștemitanu", Chișinău, Moldova

Objectives

Successful implant outcome is basically the result of primary implant stability following placement. Therefore, implant stability is the key to clinical success. Optimal implant stabilization is particularly important in bone of low density. Primary stability depends especially on the geometry of the implant. Aim of the study was to investigate the impact of geometrical modifications of a conical self-tapping Camlog® implant ("J" and "K" line; Fig 2) on primary stability ex-vivo.

Fig 1: Patient with camlog implants

Material and Method

Two different types of Camlog implants ("J" and "K" line, Camlog, Basel, Switzerland) were inserted into fresh porcine bone. The implants (4.3 x 9mm; half "K", half "J") were placed into porcine cortical (n=18) and cancellous (n=18) bone (Fig 3). Damping capacity (Periotest, Modautal, Germany) and Implant Stability Quotient (ISQ, Osstell, Gothenburg, Sweden) were measured (Fig 4).

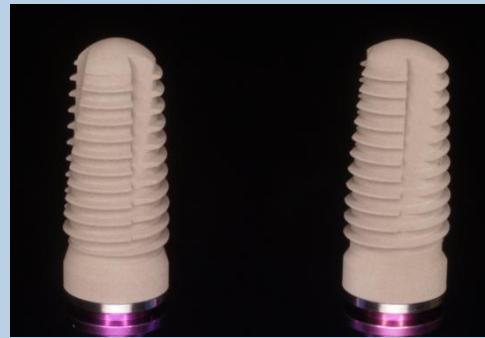


Fig 2: Camlog K-Line and J-Line implants

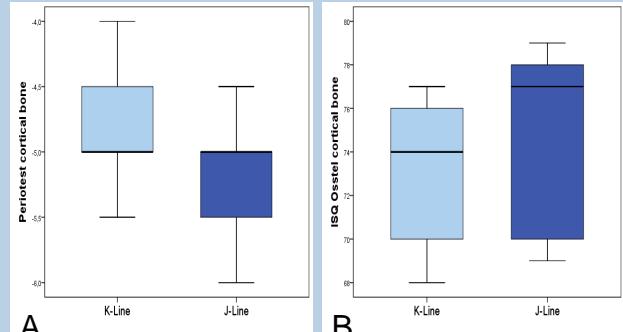


Fig 3: Implantation of Camlog K-Line implants into cortical bone

Fig 4: Measurement of ISQ with Ossatel

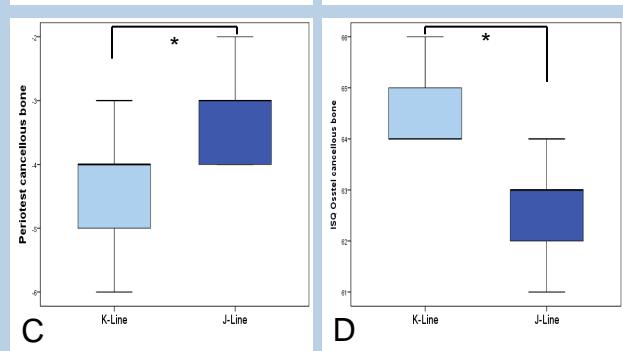


Fig 5A: Blobs for mean Periotest values K-Line vs. J-Line in cortical bone ($p=0.27$; $n=9$), 5B: Blobs for mean ISQ Ossatel values K-Line vs. J-Line in cortical bone ($p=0.36$; $n=9$), Blobs for mean Periotest values K-Line vs. J-Line in cancellous bone ($p=0.02$; $n=9$), 5B: Blobs for mean ISQ Ossatel values K-Line vs. J-Line in cancellous bone ($p=0.001$; $n=9$). * $p<0.05$.

Results

In cortical bone a high primary stability without significant differences between the implant lines regarding the mean Periotest values (Fig 5A; $p=0.27$; $n=9$) and the mean ISQ values (Fig 5B; $p=0.36$; $n=9$) was seen. In cancellous bone, the "K" line showed minor though significant lower Periotest (Fig 5C; $p=0.02$; $n=9$) and significant higher ISQ values (Fig 5D; $p=0.001$; $n=9$).

Conclusion

Due to the minor changes in the implant geometry, an increased primary stability of "K" line implants in cancellous bone seems to be possible.